
A Summary of the TAUTeam Approach to Wining
in the NetML Challenge 2020

Eyal Horowicz∗, Tal Shapira† and Yuval Shavitt‡

School of Electrical Engineering, Tel-Aviv University
Email: ∗eyalhorowicz@mail.tau.ac.il, †talshapira1@mail.tau.ac.il

‡shavitt@eng.tau.ac.il

I. INTRODUCTION

NetML Challenge 2020 [1] is a machine learning driven
network traffic analytic challenge where participants are re-
quired to apply novel machine learning technologies in order
to detect malicious flows or distinguish between applications
in a fine-grained fashion among network flows.

In the challenge’s dataset, each flow is represented by 121
features extracted from up to 200 packets in both directions
as described by Barut et al. [1] and is labeled by 2 or 3
hierarchical multi-labels. The dataset consists of records of
over 1M flows and relies on 3 public sources: NetML [2],
CICIDS2017 [3] and non-vpn2016 [4].

The challenge is composed of 7 tracks, 4 of them for
malware detection and the rest are for traffic classification:

• Track 1 – Malware Detection using top-level annotations
with NetML dataset

• Track 2 – Malware Classification using fine-grained an-
notations with NetML dataset

• Track 3 – Malware Detection using top-level annotations
with CICIDS2017 dataset

• Track 4 – Malware Classification using fine-grained an-
notations with CICIDS2017 dataset

• Track 5 – Traffic Type Classification using top-level
annotations with non-vpn2016 dataset

• Track 6 – Application Classification using mid-level
annotations with non-vpn2016 dataset

• Track 7 – Fine-grained Application Classification with
non-vpn2016 dataset

In order to win a track, team must achieve the highest score.
There are 2 types of scores:

• Multi-Class classification score:
(F1_Score) · (Mean_Average_Precision)

• Binary classifications score:
(True_Positive_Rate) · (1− (False_Alarm_Rate))

The TAU-Team is the only team to capture one of the top
3 places in all of the tracks and first place in more than one.
In this document, we share technical details of our approach
for Track-3 and Track-5, where we got first place.

II. METHODS

In this section, we describe how we pre-processed the data
by removing most of the features and creating a few new

Table I: Original features of NetML challenge

Feature Description
time_length period time of the sample
pr protocol (6 or 17)
src_port source port
dst_port destination port
bytes_out total bytes out
num_pkts_out total packets out
bytes_in total bytes in
num_pkts_in total packets in
intervals_ccnt[] histogram of packet arrive intervals
ack_psh_rst_syn_fin_cnt[] histogram of tcp flag counting
hdr_distinct #distinct values of header len
hdr_ccnt[] histogram of header len
pld_distinct #distinct values of payload length
pld_ccnt[] histogram of payload len
hdr_mean mean value of header len
hdr_bin_40 #packets with header len ∈ [28 40]
pld_bin_128 #packets with payload len < 128
pld_bin_inf #packets with payload len > 1024
pld_max max value of payload length
pld_mean mean value of payload length
pld_medium medium value of payload length
pld_var variance value of payload length
rev... flow features of the reverse flow

features, the specific classifiers we tried and the strategies we
used for the training and predicting process.

A. Data pre-porcessing

The supplied datasets consist of a unique representation of
bi-directional flows. Each flow is annotated by (as it termed by
[1]) meta-data features, but since some of these are histograms,
and there are additional reverse features, there are 121 features
in total. The full description of the original meta-data features
is shown in Table I.

We created new features by calculating rates, mean sizes of
packets and mean of times between packets in both directions
of the flow. We also added features for the ratios between
both directions. See Table II for full description. We examined
different combinations of the original features and found that
many classifiers achieved almost the same or even better



Table II: New features

Feature Description
bytes_in_out_ratio in / out of bytes
num_pkts_in_ratio in / out of num_pkts
bytes_in_rate bytes_in / time_length
bytes_out_rate bytes_out / time_length
num_pkts_in_rate num_pkts_in / time_length
num_pkts_out_rate num_pkts_out / time_length
avg_pkt_in_bytes bytes_in / num_pkts_in
avg_pkt_out_bytes bytes_out / num_pkts_out
avg_dt_in time_length / num_pkts_in
avg_dt_out time_length / num_pkts_out
avg_pkt_in_out_bytes_ratio in / out of avg_pkt_bytes
avg_dt_in_out_ratio in / out of avg_dt

results without the 68 histogram features of header length,
payload length and packet inter-arrival intervals.

We normalized all features to have the same mean and
variance. For the normalization we used all the data, and not
limited the process to the labeled data.

B. Classifiers

In classification problems with small-to-medium struc-
tured/tabular data, decision tree based algorithms are consid-
ered best-in-class. Thus, we experimented with several of those
and found Random Forest [5] and XGBoost [6] to be the most
powerful classifiers.

Another, new promising approach was to use deep learning
classifier with a sequential attention mechanism, which allows
it to choose the features to reason from at each decision step
(We used Tabnet [7]). However, the deep learning classifiers
achieved lower results than the decision-tree-based classifiers,
and its execution time was significantly longer.

C. Training Specification and Strategies

1) One Vs. Rest: Also known as One Vs. All, this strategy
consists of fitting one classifier per class. For each classifier,
the class is fitted against all the other classes.

2) k-fold cross-validation: In k-fold cross-validation, the
original sample is randomly partitioned into k equal sized sub-
samples. Of the k sub-samples, a single sub-sample is retained
as the validation data for testing the model, and the remaining
k-1 sub-samples are used as training data. The cross-validation
process is repeated k times, with each of the k sub-samples
used exactly once as the validation data. We used k-fold with
k=5.

3) Fine Labeled: In a hierarchical classification task, where
each example simultaneously belongs to one class in each
hierarchical level, several strategies can be applied in order to
utilize the hierarchical structure information. On the top level
we have used the Fine Labeled and the One Vs. Rest strategy
together, creating multiple classifiers for each top level label
and using them all in order to deduce the best tag.

III. EXPERIMENTS AND RESULTS

The annotations for the test-std and test-challenge of NetML
were not released, therefore we report here results from
experiments using the development dataset, as was done in
the public baseline.

A. Features selection

We trained models with several sets of features: the original
features (121), without the histogram features (53), without the
histogram but with our new feature (65), and with all original
+ our new features (133). Table II shows that the differences
between the feature sets are small: from almost none to 4%.
One important conclusion from this table is that removing the
histogram features that are more than half of all the features,
have no real influence on the results, but it reduces RAM
consumption and improves executing time, significantly. Thus,
in Table IV and Table V we used the set with our new features
but without the histogram features.

Table III: Overall score based on different features

Original Hist
Removed

Hist
Removed
+ New

Original +
New

CICIDS Top
RandomForest

0.9785 0.9790 0.9825 0.9828

CICIDS Top
XGBOOST

0.9781 0.9789 0.9786 0.9782

NonVpn Top
RandomForest

0.2878 0.2864 0.2854 0.2862

NonVpn Top
XGBoost

0.1942 0.1945 0.1980 0.2019

B. One Vs. Rest strategy

The One vs. rest strategy is relevant only to multi class
problems, and meaningless for the binary classifications.
Therefore we present the results of the fine-level classification
in Table IV. We found that this simple strategy was useful for
the traffic classification task.

Table IV: Overall score, One Vs. Rest strategy

Random
Forest

Random
Forest
One-Vs-
Rest

XGBoost XGBoost
One-Vs-
Rest

CICIDS Fine 0.9089 0.9136 0.9277 0.9178
NonVpn Fine 0.0929 0.0941 0.0644 0.0687

C. Fine Labeled

We trained the top classifiers to predict the fine labels
and aggregate to the top level based on fine prediction. The
hierarchical structure of this task made this process extremely
valuable, as can be seen by comparing the results in Table V
with the ones in Table III - Using this strategy improved
the Malware Detection overall score from 0.983 to 0.994 and
improved the Traffic Classification score dramatically by 75%.



Table V: Overall score, Fine labeled strategy

Random
Forest

Random
Forest
One-Vs-
Rest

XGBoost XGBoost
One-Vs-
Rest

CICIDS Top 0.9932 0.9937 0.9886 0.9881
NonVpn Top 0.4982 0.5027 0.3878 0.3906

IV. CONCLUDING REMARKS

We described our approach for achieving the highest score
in some of the traffic classification and malware detection
tasks on NetML challenge. We revealed that histogram based
features, which are more than half of the original features can
be removed without damaging the classification. We also found
that the hierarchical structure of the problems can be used to
improved the classification task and showed a specific method
combining the Fine Labeled and the One Vs. Rest strategies
to achieve the highest score for CICIDS Top and NonVpn Top
and reach the 1st place in tracks 3, 5.

REFERENCES

[1] O. Barut, Y. Luo, T. Zhang, W. Li, and P. Li, “NetML: A challenge for
network traffic analytics,” 2020.

[2] Stratosphere, “Stratosphere laboratory datasets,” 2015, retrieved March
13, 2020, from https://www.stratosphereips.org/datasets-overview.

[3] I. Sharafaldin., A. H. Lashkari., and A. A. Ghorbani., “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in The 4th International Conference on Information Systems Security and
Privacy (ICISSP). INSTICC, Jan. 2018, pp. 108–116.

[4] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghor-
bani, “Characterization of encrypted and vpn traffic using time-related
features,” in The 2nd International Conference on Information Systems
Security and Privacy (ICISSP). INSTICC, Feb. 2016, pp. 407–414.

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: http://dx.doi.org/10.1023/A%
3A1010933404324

[6] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[7] S. O. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learn-
ing,” 2020.

https://www.stratosphereips.org/datasets-overview
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324

	Introduction
	Methods
	Data pre-porcessing
	Classifiers
	Training Specification and Strategies
	One Vs. Rest
	k-fold cross-validation
	Fine Labeled


	Experiments and Results
	Features selection
	One Vs. Rest strategy
	Fine Labeled

	Concluding Remarks
	References

